

Hood Details

NFPA 96 (2011) Section 6.2.1.2:

 Where grease removal devices are used in conjunction with charcoal or charcoal-type broilers, including gas or electrically heated charbroilers, a minimum vertical distance of 1.22 m (4 ft) shall be maintained between the lower edge of the grease removal device and the cooking surface.

Evidence Against Routine Cooking Flare-Ups as a Valid Ignition Source for Range-Hood Fires

Richard J. Martin, PhD, PE, CFI, CFPS Martin Thermal Engineering, Inc.

PhD, PE, CFI, CFPS +1 (424) 297-0480 gineering, Inc. Hawthorne, California *www.martinthermal.com*

Semi-Infinite Medium • For a specified Heat Flux $q'' = 20 - 90 \frac{kW}{m^2}$, use Cengel Eq. 4-46: $T(x,t) = T_{init} + \frac{\dot{q}}{k} \left[\sqrt{\frac{4\alpha t}{\pi} exp\left(\frac{-x^2}{4\alpha t}\right)} - x \cdot erfc\left(\frac{x}{2\sqrt{\alpha t}}\right) \right]$ • Solving for time *t* to reach T_{smoke} for lard at surface of grease filter (x = 0.0 m), assuming $T_{init} = 60^{\circ}\text{C} = 140^{\circ}\text{F}$: $t = \frac{\pi}{4\alpha} \left(\frac{k}{q''_{flare}} [T_{smoke} - T_{init}]\right)^2$

Results Summary

• For moderate initial grease temperature

 $(T_{init} = 50^{\circ}\text{C} = 122^{\circ}\text{F})$ and moderate heat flux $\left(q^{"} \approx 20 \frac{kW}{m^{2}}\right)$ the time for the grease surface to reach it's smoke temperature exceeds t = 60 sec

For momentary flare-ups ($t < 4.0 \ sec$) ignition of grease does not occur unless initial temperature is very high ($T_{init} > 75^{\circ}C$)and flare heat flux is very high ($q'' > 80 \frac{kW}{m^2}$).

High initial temperature could result from exhaust fan failure.
High heat flux occurs when the pool fire grows and both the diameter and height of the fire are larger

• UL 1046 testing requires "no flame extension" with a 70 kW pilot flame for 3 min (180 sec)

Conclusions

 Momentary grill or cooking pan flare-ups are rarely (if ever) capable of initiating fires in range hood grease filters

A hostile fire (long duration, large diameter/height) originating at the cooking surface is a far more likely ignition source for a range hood fire than a routine, short-duration flare-up

Grease filter design (i.e., listing to UL 1094) inhibits ignition of grease on filters by momentary flare-ups.
Restaurant flare-ups should be studied and testing should be performed to better characterize grease layers, heat fluxes, and ignition conditions

Citations

UL 1046 (2012) "Grease Filters for Exhaust Ducts"
NFPA 96 (2011) "Standard for Ventilation Control and Fire Protection of Commercial Cooking Operations"
Cengel, Y.A. and Ghajar, A.J.; (2011) "Heat and Mass

 Cengel, Y.A. and Ghajar, A.J.; (2011) "Heat and Mass Transfer – Fundamentals & Applications"; McGraw-Hill
 "SFPE Handbook of Fire Protection Engineering -3rd Edition"; (2002); National Fire Protection Association
 Cooper, L.Y.; (1982); "Heat Transfer from a Buoyant Plume to an Unconfined Ceiling"; ASME J. Heat Transfer; Vol. 104; P. 446

 http://www.cookingforengineers.com/article/50/Smoke -Points-of-Various-Fats